

NodeMCU-BU01 SPECIFICATION Version V1.0 Copyright ©2020

Disclaimer and Copyright Notice

The information in this article, including URL addresses for reference, is subject to change without notice.

This document is provided "as is" without warranty of any kind, including any warranty of merchantability, fitness for a particular purpose, or non-infringement, and any warranty of any proposal, specification, or sample mentioned elsewhere. No liability is assumed in this document, including any infringement of any patent rights arising out of the use of the information in this document. No license is granted by estoppel or otherwise in this document, either express or implied.

The test data obtained in this article are all obtained from the testing performed by Wintel Digital Labs. Actual results may vary slightly.

The Wi-Fi Alliance member logo is owned by the Wi-Fi Alliance.

All trademark names, trademarks and registered trademarks mentioned in this article are the property of their respective owners and are hereby declared.

The final interpretation right belongs to Shenzhen Wintel Digital Technology Co., Ltd.

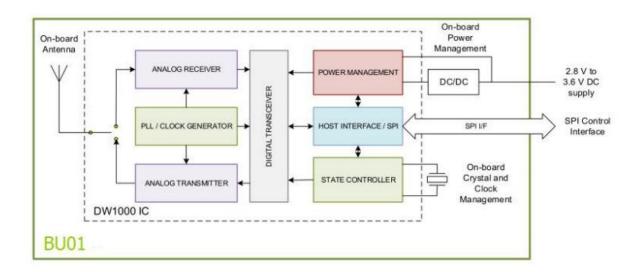
Attention

The contents of this manual may be changed due to product version upgrades or other reasons. Shenzhen Wintel Digital Technology Co., Ltd.

reserves the right to modify the contents of this manual without any notice or prompt. This manual is only used as a guide. Shenzhen Wintel Digital Technology Co., Ltd. makes every effort to provide accurate information in this manual, but Shenzhen Wintel Digital Technology Co., Ltd. does not ensure that the content of the manual is completely error-free. All statements and information in this manual And recommendations do not constitute any express or implied warranty.

Documentation/revision/ revocation resume

Version	Date	Development/revision	Developme nt	Approval
V1. 0	2020. 05. 20	Initial development	Xie Yiji	


Content

1.Product Overview	5
2. Electrical parameters	
3. Appearance dimensions	
4. Definition of pins	
5. Schematic diagrams	
6. Design guidance	12
7. ROLLING OF Reflow soldering	14
8. Packaging information	15
9. Contact us	15

1. Product Overview

NodeMCU-BU01 is designed as a development board for the BU01 module, equipped with STM32F103C8T6MCU, peripherals to add temperature and humidity sensors and three-dimensional acceleration sensor, for customers to develop debugging to provide convenience. BU01 is an ultra-wideband (UWB) transceiver module based on Decawave DW1000 design. BU01 integrated the antenna, RF circuit, power management and clock circuits. BU01 can be used in bidirectional ranging or TD0A positioning systems, Positioning accuracy up to 10cm, and supports data rates up to 6.8Mbps.

Characteristics

- Easy integration without RF design
- Extension of communications using RTLS infrastructure
- Support high label density
- Compliance with IEEE 802.15.4-2011UWB standards
- Support 4 channels 3.5GHz to 6.5GHz
- Programmable transmit power
- 3.3 V /5V power supply
- Power consumption <1mA in sleep mode
- Support for bidirectional ranging and TDOA

- Support SPI interface
- Data rate 100 kbps,850kbps,6.8Mbps

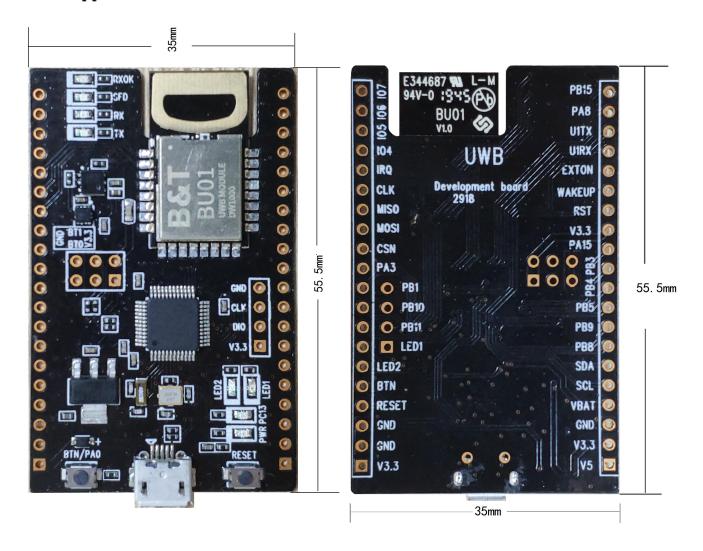
Main parameters

Table 1 Key parameter descriptions

Model Name	NodeMCU-BU01		
Dimensions	35*55.5(±0.2)(W*H) mm		
Package	DIP-40		
Antenna	PCB antenna		
Frequency range	3.5GHz to 6.5GHz		
Interface	The all IO of PWM/I2C/GPIO 、MCU		
Operating temperature	-40°C~85°C		
Storage environment	$-40~^{\circ}\text{C}~^{\sim}~125~^{\circ}\text{C}$, < 90%RH		
Power supply range	5V or 3.3V		
Power consumption	Development board :160 mA (with MCU, sensors)		

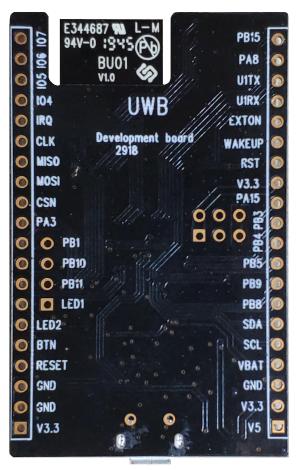
2. Electrical parameters

Electrical characteristics


Absolute maximum rating

Any more than the following absolute maximum ratings can cause chip damage

Name of name	Minimum value	Typical values	Maximum value	Units
Micro USB supply voltage	_	5	-	V
Pin header 3.3 V supply voltage	_	3. 3	-	V
Operating temperature	-40	_	+85	${\mathbb C}$
Storage temperature	-40	_	+125	${\mathbb C}$


3. Appearance dimensions

4. Definition of pins

NodeMCU-BU01 module has a total of 50 interfaces, such as the pin diagram, the pin function definition table is the interface definition.

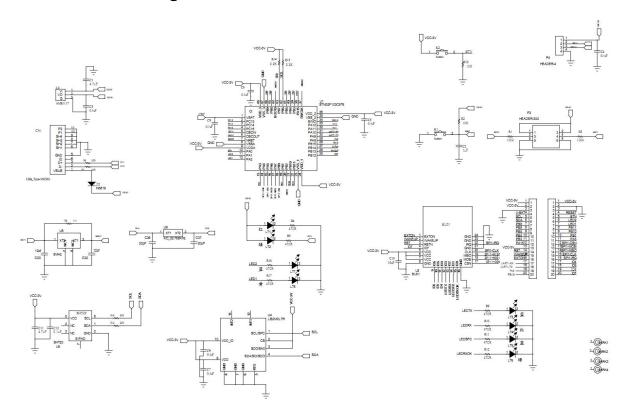
NodeMCU-BU01 Foot Schemes

Foot function definition table

Pin No.	Item	Functional Description	
1	107	default value is used as SYNC input. this pin can be reconfigured as a universal I $/0$ pin GPI07 under software control.	
2	106	universal I $/0$ pin. when powered on, it is used as the SPIPHA (SPI phase selection) pin for configuring the SPI mode of operation. After power on, this pin will default to universal I $/0$ pin.	
3	I0 5	universal I /O pin. when powered on, it is used as a SPIPOL (SPI polarity selection) pin for configuring SPI working mode. after power on, this pin will default to	

		universal I /O pin.
4	104	universal I /O pin.
5	IRQ	The interrupt request output from the DWM1000 to the host processor and is connected to the MCU PBO. by default, the IRQ is a high-level efficient output, but can be configured as low-level valid if required. to run correctly in SLEEP and DEEPSLEEP mode, it should be configured to run efficiently at high levels. this pin will float in hibernation and DEEPSLEEP states and may cause a pseudo interrupt unless it is pulled low. This pin can be reconfigured as a generic I /O line GPIO8. when no IRQ function is used
6	CLK	SPI clock and connected to MCU PA5
7	MISO	SPI data output and connected to MCU PA6
8	MOSI	SPI data input and connected to MCU PA7
9	CSN	SPI chip select and connect with MCU PA4. this is a low level effective enable input. SPICSn jumps from high to low indicate the beginning of a new SPI transaction. SPICSn can also be used as a wake-up signal to get DW1000 out of sleep or sleep state.
10	PA3	PA3 on the MCU
11	PB1	PB1 on the MCU
12	PB10	PB10 on the MCU
13	PB11	PB11 on the MCU
14	LED1	PA2, connection LED1 on the MCU
15	LED2	PA1, connection LED2 on the MCU
16	BTN	PAO, connection BTN keys on the MCU
17	RESET	Reset pin on MCU, connect reset button
18	GND	Ground
19	GND	Ground
20	V3. 3	3.3 V Power supply
21	V5	5V power supply

22	V3. 3	3.3 V Power supply
23	GND	Ground grounding
24	VBAT	Vbat MCU battery power
25	SCL	SCL pin on MCU, default pull up 3.3 V, internal connect sensor SCL pin
26	SDA	SDA pin on MCU, default pull up 3.3 V, internal connect sensor SDA pin
27	PB8	PB8 on the MCU
28	PB9	PB9 on the MCU
29	PB5	PB5 on the MCU
30	PB4	PB4 on the MCU
31	PB3	PB3 on the MCU
32	PA15	PA15 on the MCU
33	V3. 3	3.3 V Power supply
34	RST	Reset pin on BU01 and connected to MCU PB12
35	WAKEUP	the wake-up pin on the BUO1 and is connected to the PB13 of the MCU. when set to a valid high level state, the WAKEUP pin brings the DW1000 into working mode from a dormant or DEEPSLEEP state. If not used, the pin can be grounded
36	EXTON	The EXTON pin on the BUO1 is connected to the MCU PB14 and the external device is enabled. position and remain active during wake-up until the device enters sleep mode. can be used to control external DC-DC converters or other circuits not required when the device is in sleep mode to minimize power consumption
37	U1RX	UART1-RX on the MCU
38	U1TX	UART1-TX on the MCU
39	PA8	PA8 on the MCU
40	PB15	PB15 on the MCU
DIO	Swdio	SWDIO feet on MCU, default flash pin
CLK	Swc1k	SWDIO feet on MCU, default flash pin



BT0	ВООТО	BOOTO foot on MCU, control MCU start mode	
BT1	B00T1	BOOT1 foot on MCU, control MCU start mode	
RESET keys	RESET	Reset button	
BTN/PAO keys	BTN/PA0	Press button to pull up PAO pin	

BOOT pin controls start-up mode:

воото	B00T1	MODE
0	X	FLASH
1	1	SRAM
1	0	ISP

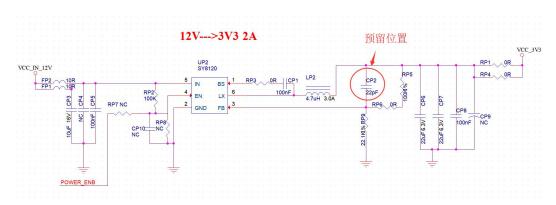
5. Schematic diagrams

6. Design guidance

1. Antenna layout requirements

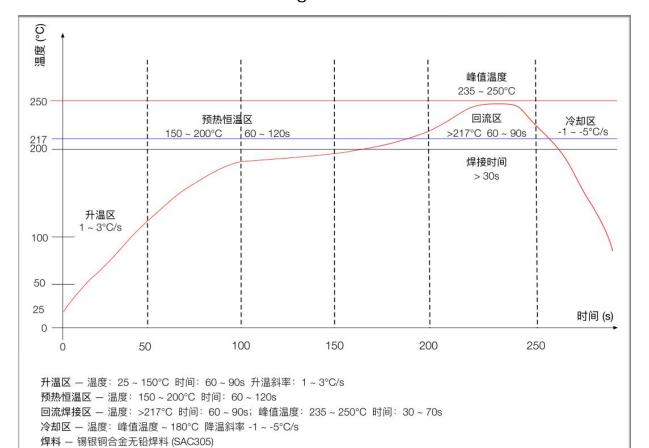
It is forbidden to place metal parts around the antenna, and to put away from high frequency devices.

2. Power supply


Programme I:

Standard Micro USB interface power supply

Programme II:


Pin 3.3 V Power supply

- (1), recommend 3.3 V voltage, peak over 500mA current
- (2), recommend the use of LDO power supply; if used DC-DC the recommended ripple is controlled within 30mV.
- (3), DC-DC power supply circuit is suggested to reserve the position of dynamic response capacitance, which can optimize the output ripple when the load changes greatly.
- (4),3.3 V The proposed addition of ESD devices.

7. ROLLING OF Reflow soldering

